Modeling and visualizing semantic and spatio-temporal evolution of topics in interpersonal communication on Twitter

ثبت نشده
چکیده

Interpersonal communication on online social networks has a significant impact on the society by not only diffusing information, but also forming social ties, norms, and behaviors. Knowing how the conversational discourse semantically and geographically vary over time can help uncover the changing dynamics of interpersonal ties and the digital traces of social events. This paper introduces a framework for modeling and visualizing the semantic and spatio-temporal evolution of topics in a spatiallyembedded and time-stamped interpersonal communication network. The framework consists of (1) a topic modeling workflow for modeling topics and extracting the evolution of conversational discourse; (2) a geo-social network modeling and smoothing approach to projecting connection characteristics and semantics of communication onto geographic space and time; (3) a web-based geovisual analytics environment for exploring semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. To demonstrate, geo-located and reciprocal user mention and reply tweets over the course of the 2016 primary and presidential elections in the U.S. from Aug. 1, 2015 to Nov. 15, 2016 were analyzed. The large portion of the topics extracted from mention tweets were related to daily life routines, human activities and interests such as school, work, sports, dating, wearing, birthday celebration, music, food and live-tweeting. Specific focus on the analysis of political conversations revealed that the content of conversational discourse was split between civil rights and election-related discussions of the political campaigns and candidates. These political topics exhibited major shifts in terms of content and the popularity in reaction to primaries, debates, and events throughout the study period. While civil rights discussions were more dominant and in higher intensity across the nation and throughout the whole time period, election specific conversations resulted in temporally-varying local hotspots that correlated with locations of primaries and events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

Modeling of spatio-temporal of albedo over Iran

The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the high...

متن کامل

Modeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M

Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018